
6/9/22, 11:38 AM Vulnerabilities Affecting Dominion Voting Systems ImageCast X | CISA

https://www.cisa.gov/uscert/ics/advisories/icsa-22-154-01 1/5

An official website of the United States government Here's how you know TLP:WHITE

TLP:WHITE

More ICS-CERT AdvisoriesICS Advisory (ICSA-22-154-01)
Vulnerabilities Affecting Dominion Voting Systems ImageCast X
Original release date: June 03, 2022

Legal Notice
All information products included in https://us-cert.cisa.gov/ics are provided "as is" for informational purposes only. The

Department of Homeland Security (DHS) does not provide any warranties of any kind regarding any information contained within.

DHS does not endorse any commercial product or service, referenced in this product or otherwise. Further dissemination of this

product is governed by the Traffic Light Protocol (TLP) marking in the header. For more information about TLP, see https://us-

cert.cisa.gov/tlp/.

 

1. SUMMARY
This advisory identifies vulnerabilities affecting versions of the Dominion Voting Systems
Democracy Suite ImageCast X, which is an in-person voting system used to allow voters to
mark their ballot. The ImageCast X can be configured to allow a voter to produce a paper
record or to record votes electronically. While these vulnerabilities present risks that
should be mitigated as soon as possible, CISA has no evidence that these vulnerabilities
have been exploited in any elections. 

Exploitation of these vulnerabilities would require physical access to individual ImageCast
X devices, access to the Election Management System (EMS), or the ability to modify files
before they are uploaded to ImageCast X devices. Jurisdictions can prevent and/or detect
the exploitation of these vulnerabilities by diligently applying the mitigations
recommended in this advisory, including technical, physical, and operational controls that
limit unauthorized access or manipulation of voting systems. Many of these mitigations are
already typically standard practice in jurisdictions where these devices are in use and can
be enhanced to further guard against exploitation of these vulnerabilities.

2. TECHNICAL DETAILS

https://www.cisa.gov/uscert/ics/advisories/
https://www.cisa.gov/uscert/ics
https://www.cisa.gov/uscert/tlp/


6/9/22, 11:38 AM Vulnerabilities Affecting Dominion Voting Systems ImageCast X | CISA

https://www.cisa.gov/uscert/ics/advisories/icsa-22-154-01 2/5

TLP:WHITE

TLP:WHITE

2.1 AFFECTED PRODUCTS
The following versions of the Dominion Voting Systems ImageCast X software are known to
be affected (other versions were not able to be tested):

ImageCast X firmware based on Android 5.1, as used in Dominion Democracy Suite
Voting System Version 5.5-A
ImageCast X application Versions 5.5.10.30 and 5.5.10.32, as used in Dominion
Democracy Suite Voting System Version 5.5-A

NOTE: After following the vendor’s procedure to upgrade the ImageCast X from
Version 5.5.10.30 to 5.5.10.32, or after performing other Android administrative
actions, the ImageCast X may be left in a configuration that could allow an attacker
who can attach an external input device to escalate privileges and/or install
malicious code. Instructions to check for and mitigate this condition are available
from Dominion Voting Systems.

Any jurisdictions running ImageCast X are encouraged to contact Dominion Voting Systems
to understand the vulnerability status of their specific implementation. 

2.2 VULNERABILITY OVERVIEW
NOTE: Mitigations to reduce the risk of exploitation of these vulnerabilities can be found in
Section 3 of this document.

2.2.1    IMPROPER VERIFICATION OF CRYPTOGRAPHIC SIGNATURE CWE-347

The tested version of ImageCast X does not validate application signatures to a trusted root
certificate. Use of a trusted root certificate ensures software installed on a device is
traceable to, or verifiable against, a cryptographic key provided by the manufacturer to
detect tampering. An attacker could leverage this vulnerability to install malicious code,
which could also be spread to other vulnerable ImageCast X devices via removable media. 

CVE-2022-1739 has been assigned to this vulnerability. 

2.2.2    MUTABLE ATTESTATION OR MEASUREMENT REPORTING DATA CWE-1283

The tested version of ImageCast X’s on-screen application hash display feature, audit log
export, and application export functionality rely on self-attestation mechanisms. An
attacker could leverage this vulnerability to disguise malicious applications on a device.

CVE-2022-1740 has been assigned to this vulnerability. 

2.2.3    HIDDEN FUNCTIONALITY CWE-912

The tested version of ImageCast X has a Terminal Emulator application which could be
leveraged by an attacker to gain elevated privileges on a device and/or install malicious
code.

CVE-2022-1741 has been assigned to this vulnerability. 

2.2.4    IMPROPER PROTECTION OF ALTERNATE PATH CWE-424

https://cwe.mitre.org/data/definitions/347.html
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2022-1739
https://cwe.mitre.org/data/definitions/1283.html
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2022-1740
https://cwe.mitre.org/data/definitions/912.html
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2022-1741
https://cwe.mitre.org/data/definitions/424.html


6/9/22, 11:38 AM Vulnerabilities Affecting Dominion Voting Systems ImageCast X | CISA

https://www.cisa.gov/uscert/ics/advisories/icsa-22-154-01 3/5

TLP:WHITE

TLP:WHITE

The tested version of ImageCast X allows for rebooting into Android Safe Mode, which
allows an attacker to directly access the operating system. An attacker could leverage this
vulnerability to escalate privileges on a device and/or install malicious code.

CVE-2022-1742 has been assigned to this vulnerability. 

2.2.5    PATH TRAVERSAL: '../FILEDIR' CWE-24

The tested version of ImageCast X can be manipulated to cause arbitrary code execution by
specially crafted election definition files. An attacker could leverage this vulnerability to
spread malicious code to ImageCast X devices from the EMS. 

CVE-2022-1743 has been assigned to this vulnerability. 

2.2.6    EXECUTION WITH UNNECESSARY PRIVILEGES CWE-250

Applications on the tested version of ImageCast X can execute code with elevated
privileges by exploiting a system level service. An attacker could leverage this vulnerability
to escalate privileges on a device and/or install malicious code.

CVE-2022-1744 has been assigned to this vulnerability. 

2.2.7    AUTHENTICATION BYPASS BY SPOOFING CWE-290

The authentication mechanism used by technicians on the tested version of ImageCast X is
susceptible to forgery. An attacker with physical access may use this to gain administrative
privileges on a device and install malicious code or perform arbitrary administrative
actions.

CVE-2022-1745 has been assigned to this vulnerability. 

2.2.8    INCORRECT PRIVILEGE ASSIGNMENT CWE-266

The authentication mechanism used by poll workers to administer voting using the tested
version of ImageCast X can expose cryptographic secrets used to protect election
information. An attacker could leverage this vulnerability to gain access to sensitive
information and perform privileged actions, potentially affecting other election
equipment.

CVE-2022-1746 has been assigned to this vulnerability. 

2.2.9    ORIGIN VALIDATION ERROR CWE-346

The authentication mechanism used by voters to activate a voting session on the tested
version of ImageCast X is susceptible to forgery. An attacker could leverage this
vulnerability to print an arbitrary number of ballots without authorization.

CVE-2022-1747 has been assigned to this vulnerability. 

2.3 BACKGROUND
CRITICAL INFRASTRUCTURE SECTORS Government Facilities / Election Infrastructure
COUNTRIES/AREAS DEPLOYED: Multiple

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2022-1742
https://cwe.mitre.org/data/definitions/24.html
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2022-1743
https://cwe.mitre.org/data/definitions/250.html
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2022-1744
https://cwe.mitre.org/data/definitions/290.html
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2022-1745
https://cwe.mitre.org/data/definitions/266.html
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2022-1746
https://cwe.mitre.org/data/definitions/346.html
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2022-1747


6/9/22, 11:38 AM Vulnerabilities Affecting Dominion Voting Systems ImageCast X | CISA

https://www.cisa.gov/uscert/ics/advisories/icsa-22-154-01 4/5

TLP:WHITE

TLP:WHITE

COMPANY HEADQUARTERS LOCATION: Denver, Colorado

2.4 RESEARCHER
J. Alex Halderman, University of Michigan, and Drew Springall, Auburn University, reported
these vulnerabilities to CISA.

3. MITIGATIONS
CISA recommends election officials continue to take and further enhance defensive
measures to reduce the risk of exploitation of these vulnerabilities. Specifically, for each
election, election officials should: 

Contact Dominion Voting Systems to determine which software and/or firmware
updates need to be applied. Dominion Voting Systems reports to CISA that the above
vulnerabilities have been addressed in subsequent software versions.
Ensure all affected devices are physically protected before, during, and after voting.
Ensure compliance with chain of custody procedures throughout the election cycle. 
Ensure that ImageCast X and the Election Management System (EMS) are not
connected to any external (i.e., Internet accessible) networks.
Ensure carefully selected protective and detective physical security measures (for
example, locks and tamper-evident seals) are implemented on all affected devices,
including on connected devices such as printers and connecting cables.
Close any background application windows on each ImageCast X device.
Use read-only media to update software or install files onto ImageCast X devices.
Use separate, unique passcodes for each poll worker card.
Ensure all ImageCast X devices are subjected to rigorous pre- and post-election testing.
Disable the “Unify Tabulator Security Keys” feature on the election management
system and ensure new cryptographic keys are used for each election.
As recommended by Dominion Voting Systems, use the supplemental method to
validate hashes on applications, audit log exports, and application exports.
Encourage voters to verify the human-readable votes on printout. 
Conduct rigorous post-election tabulation audits of the human-readable portions of
physical ballots and paper records, to include reviewing ballot chain of custody and
conducting voter/ballot reconciliation procedures. These activities are especially
crucial to detect attacks where the listed vulnerabilities are exploited such that a
barcode is manipulated to be tabulated inconsistently with the human-readable
portion of the paper ballot. (NOTE: If states and jurisdictions so choose, the ImageCast
X provides the configuration option to produce ballots that do not print barcodes for
tabulation.)

Contact Information



6/9/22, 11:38 AM Vulnerabilities Affecting Dominion Voting Systems ImageCast X | CISA

https://www.cisa.gov/uscert/ics/advisories/icsa-22-154-01 5/5

TLP:WHITE

TLP:WHITE

For any questions related to this report, please contact the CISA at:


Email: CISAservicedesk@cisa.dhs.gov

Toll Free: 1-888-282-0870

For industrial control systems cybersecurity information:  https://us-cert.cisa.gov/ics 

or incident reporting:  https://us-cert.cisa.gov/report

CISA continuously strives to improve its products and services. You can help by choosing
one of the links below to provide feedback about this product.

This product is provided subject to this Notification and this Privacy & Use policy.

mailto:cisaservicedesk@cisa.dhs.gov
https://www.cisa.gov/uscert/ics
https://www.cisa.gov/uscert/report
https://www.cisa.gov/uscert/privacy/notification
https://www.dhs.gov/privacy-policy


6/9/22, 11:40 AM CWE - CWE-347: Improper Verification of Cryptographic Signature (4.7)

https://cwe.mitre.org/data/definitions/347.html 1/2

Common Weakness EnumerationCommon Weakness Enumeration
A Community-Developed List of Software & Hardware Weakness TypesA Community-Developed List of Software & Hardware Weakness Types

Home 
 
 
 
 
 
 
 Search

CWE-347: Improper Verification of Cryptographic Signature
Weakness ID: 347
Abstraction: Base
Structure: Simple

Presentation Filter: Complete

 Description
The software does not verify, or incorrectly verifies, the cryptographic signature for data.

 Relationships
 Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name
ChildOf 345 Insufficient Verification of Data Authenticity

 Relevant to the view "Software Development" (CWE-699)
Nature Type ID Name
MemberOf 1214 Data Integrity Issues
MemberOf 310 Cryptographic Issues

 Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-
1003)

 Relevant to the view "Architectural Concepts" (CWE-1008)
 Modes Of Introduction

Phase Note
Architecture and Design

Implementation REALIZATION: This weakness is caused during implementation of an architectural
security tactic.

 Applicable Platforms
Languages

Class: Language-Independent (Undetermined Prevalence)

 Common Consequences

Scope Impact Likelihood

Access Control
Integrity
Confidentiality

Technical Impact: Gain Privileges or Assume Identity; Modify Application Data; Execute
Unauthorized Code or Commands

An attacker could gain access to sensitive data and possibly execute unauthorized
code.

 Demonstrative Examples
Example 1
In the following code, a JarFile object is created from a downloaded file.

The JAR file that was potentially downloaded from an untrusted source is created without verifying the signature
(if present). An alternate constructor that accepts a boolean verify parameter should be used instead.

 Observed Examples

Reference Description
CVE-2002-1796 Does not properly verify signatures for "trusted" entities.
CVE-2005-2181 Insufficient verification allows spoofing.
CVE-2005-2182 Insufficient verification allows spoofing.

About CWE List Scoring Mapping Guidance Community News

(bad code)Example Language: Java 

File f = new File(downloadedFilePath);
JarFile jf = new JarFile(f);

https://cwe.mitre.org/index.html
https://cwe.mitre.org/top25/
https://cwe.mitre.org/scoring/lists/2021_CWE_MIHW.html
https://cwe.mitre.org/index.html
https://cwe.mitre.org/find/index.html
javascript:toggleblocksOC('347_Description');
javascript:toggleblocksOC('347_Relationships');
javascript:toggleblocksOC('347_1000_relevant_table');
https://cwe.mitre.org/data/definitions/345.html
javascript:toggleblocksOC('347_699_relevant_table');
https://cwe.mitre.org/data/definitions/1214.html
https://cwe.mitre.org/data/definitions/310.html
javascript:toggleblocksOC('347_1003_relevant_table');
javascript:toggleblocksOC('347_1008_relevant_table');
javascript:toggleblocksOC('347_Modes_Of_Introduction');
javascript:toggleblocksOC('347_Applicable_Platforms');
javascript:toggleblocksOC('347_Common_Consequences');
javascript:toggleblocksOC('347_Demonstrative_Examples');
javascript:toggleblocksOC('347_Observed_Examples');
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1796
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2181
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2182
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/scoring/index.html
https://cwe.mitre.org/documents/cwe_usage/guidance.html
https://cwe.mitre.org/community/index.html
https://cwe.mitre.org/news/index.html


6/9/22, 11:40 AM CWE - CWE-347: Improper Verification of Cryptographic Signature (4.7)

https://cwe.mitre.org/data/definitions/347.html 2/2

CVE-2002-1706 Accepts a configuration file without a Message Integrity Check (MIC) signature.

 Memberships

Nature Type ID Name
MemberOf 859 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 16 - Platform

Security (SEC)
MemberOf 884 CWE Cross-section
MemberOf 959 SFP Secondary Cluster: Weak Cryptography
MemberOf 1346 OWASP Top Ten 2021 Category A02:2021 - Cryptographic Failures

 Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Improperly Verified Signature
The CERT Oracle Secure
Coding Standard for Java
(2011)

SEC06-J Do not rely on the default automatic signature verification
provided by URLClassLoader and java.util.jar

 Related Attack Patterns

CAPEC-ID Attack Pattern Name
CAPEC-463 Padding Oracle Crypto Attack
CAPEC-475 Signature Spoofing by Improper Validation

 Content History

 Submissions
Submission Date Submitter Organization
2006-07-19 PLOVER

 Modifications
 Previous Entry Names

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1706
javascript:toggleblocksOC('347_Memberships');
https://cwe.mitre.org/data/definitions/859.html
https://cwe.mitre.org/data/definitions/884.html
https://cwe.mitre.org/data/definitions/959.html
https://cwe.mitre.org/data/definitions/1346.html
javascript:toggleblocksOC('347_Taxonomy_Mappings');
javascript:toggleblocksOC('347_Related_Attack_Patterns');
http://capec.mitre.org/data/definitions/463.html
http://capec.mitre.org/data/definitions/475.html
javascript:toggleblocksOC('347_Content_History');
javascript:toggleblocksOC('347_Submissions');
javascript:toggleblocksOC('347_Modifications');
javascript:toggleblocksOC('347_Previous_Entry_Names');


6/9/22, 11:40 AM CWE - CWE-1283: Mutable Attestation or Measurement Reporting Data (4.7)

https://cwe.mitre.org/data/definitions/1283.html 1/2

Common Weakness EnumerationCommon Weakness Enumeration
A Community-Developed List of Software & Hardware Weakness TypesA Community-Developed List of Software & Hardware Weakness Types

Home 
 
 
 
 
 
 
 Search

CWE-1283: Mutable Attestation or Measurement Reporting Data
Weakness ID: 1283
Abstraction: Base
Structure: Simple

Presentation Filter: Complete

 Description
The register contents used for attestation or measurement reporting data to verify boot flow are modifiable by an
adversary.

 Extended Description
A System-on-Chip (SoC) implements secure boot or verified boot. During this boot flow, the SoC often measures
the code that it authenticates. The measurement is usually done by calculating the one-way hash of the code
binary and extending it to the previous hash. The hashing algorithm should be a Secure One-Way hash function.
The final hash, i.e., the value obtained after the completion of the boot flow, serves as the measurement data
used in reporting or in attestation. The calculated hash is often stored in registers that can later be read by the
party of interest to determine tampering of the boot flow. A common weakness is that the contents in these
registers are modifiable by an adversary, thus spoofing the measurement.

 Relationships
 Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name
ChildOf 284 Improper Access Control

 Relevant to the view "Hardware Design" (CWE-1194)
Nature Type ID Name
MemberOf 1196 Security Flow Issues

 Modes Of Introduction

Phase Note

Architecture and Design Such issues can be introduced during hardware architecture or design and can be
identified later during Testing or System Configuration phases.

Implementation If the access-controls which protecting the reporting registers are misconfigured
during implementation, this weakness can arise.

 Applicable Platforms
Languages

Class: Language-Independent (Undetermined Prevalence)

Operating Systems
Class: OS-Independent (Undetermined Prevalence)

Architectures
Class: Architecture-Independent (Undetermined Prevalence)

Technologies
Class: Technology-Independent (Undetermined Prevalence)

 Common Consequences

Scope Impact Likelihood

Confidentiality Technical Impact: Read Memory; Read Application Data

 Demonstrative Examples
Example 1
The SoC extends the hash and stores the results in registers. Without protection, an adversary can write their
chosen hash values to these registers. Thus, the attacker controls the reported results.
To prevent the above scenario, the registers should have one or more of the following properties:

About CWE List Scoring Mapping Guidance Community News

https://cwe.mitre.org/index.html
https://cwe.mitre.org/top25/
https://cwe.mitre.org/scoring/lists/2021_CWE_MIHW.html
https://cwe.mitre.org/index.html
https://cwe.mitre.org/find/index.html
javascript:toggleblocksOC('1283_Description');
javascript:toggleblocksOC('1283_Extended_Description');
javascript:toggleblocksOC('1283_Relationships');
javascript:toggleblocksOC('1283_1000_relevant_table');
https://cwe.mitre.org/data/definitions/284.html
javascript:toggleblocksOC('1283_1194_relevant_table');
https://cwe.mitre.org/data/definitions/1196.html
javascript:toggleblocksOC('1283_Modes_Of_Introduction');
javascript:toggleblocksOC('1283_Applicable_Platforms');
javascript:toggleblocksOC('1283_Common_Consequences');
javascript:toggleblocksOC('1283_Demonstrative_Examples');
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/scoring/index.html
https://cwe.mitre.org/documents/cwe_usage/guidance.html
https://cwe.mitre.org/community/index.html
https://cwe.mitre.org/news/index.html


6/9/22, 11:40 AM CWE - CWE-1283: Mutable Attestation or Measurement Reporting Data (4.7)

https://cwe.mitre.org/data/definitions/1283.html 2/2

1. Should be Read-Only with respect to an adversary
2. Cannot be extended or modifiable either directly or indirectly (using a trusted agent as proxy) by an

adversary
3. Should have appropriate access controls or protections

 Potential Mitigations

Phase: Architecture and Design
Measurement data should be stored in registers that are read-only or otherwise have access controls that
prevent modification by an untrusted agent.

 Notes
Maintenance
This entry is still in development and will continue to see updates and content improvements.
 Related Attack Patterns

CAPEC-ID Attack Pattern Name
CAPEC-680 Exploitation of Improperly Controlled Registers

 References

[REF-1107] Intel Corporation. "PCIe Device Measurement Requirements". 2018-09.
<https://www.intel.com/content/dam/www/public/us/en/documents/reference-guides/pcie-device-security-
enhancements.pdf>.

[REF-1131] John Butterworth, Cory Kallenberg
and Xeno Kovah. "BIOS Chronomancy: Fixing the Core Root of
Trust for Measurement". 2013-07-31. <https://media.blackhat.com/us-13/US-13-Butterworth-BIOS-Security-
Slides.pdf>.

 Content History

 Submissions
Submission Date Submitter Organization
2020-04-25 Arun Kanuparthi, Hareesh Khattri, Parbati Kumar Manna, Narasimha

Kumar V Mangipudi
Intel
Corporation

 Modifications

javascript:toggleblocksOC('1283_Potential_Mitigations');
javascript:toggleblocksOC('1283_Notes');
javascript:toggleblocksOC('1283_Related_Attack_Patterns');
http://capec.mitre.org/data/definitions/680.html
javascript:toggleblocksOC('1283_References');
https://www.intel.com/content/dam/www/public/us/en/documents/reference-guides/pcie-device-security-enhancements.pdf
https://media.blackhat.com/us-13/US-13-Butterworth-BIOS-Security-Slides.pdf
javascript:toggleblocksOC('1283_Content_History');
javascript:toggleblocksOC('1283_Submissions');
javascript:toggleblocksOC('1283_Modifications');


6/9/22, 11:40 AM CWE - CWE-912: Hidden Functionality (4.7)

https://cwe.mitre.org/data/definitions/912.html 1/2

Common Weakness EnumerationCommon Weakness Enumeration
A Community-Developed List of Software & Hardware Weakness TypesA Community-Developed List of Software & Hardware Weakness Types

Home 
 
 
 
 
 
 
 Search

CWE-912: Hidden Functionality
Weakness ID: 912
Abstraction: Class
Structure: Simple

Presentation Filter: Complete

 Description
The software contains functionality that is not documented, not part of the specification, and not accessible
through an interface or command sequence that is obvious to the software's users or administrators.

 Extended Description
Hidden functionality can take many forms, such as intentionally malicious code, "Easter Eggs" that contain
extraneous functionality such as games, developer-friendly shortcuts that reduce maintenance or support costs
such as hard-coded accounts, etc. From a security perspective, even when the functionality is not intentionally
malicious or damaging, it can increase the software's attack surface and expose additional weaknesses beyond
what is already exposed by the intended functionality. Even if it is not easily accessible, the hidden functionality
could be useful for attacks that modify the control flow of the application.

 Relationships
 Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name
ChildOf 684 Incorrect Provision of Specified Functionality
ParentOf 506 Embedded Malicious Code

 Modes Of Introduction

Phase Note
Architecture and Design
Implementation

 Common Consequences

Scope Impact Likelihood
Other
Integrity

Technical Impact: Varies by Context; Alter Execution Logic

 Potential Mitigations

Phase: Installation
Always verify the integrity of the software that is being installed.

Phase: Testing
Conduct a code coverage analysis using live testing, then closely inspect any code that is not covered.

 Memberships

Nature Type ID Name
MemberOf 1371 ICS Supply Chain: Poorly Documented or Undocumented Features

 Related Attack Patterns

CAPEC-ID Attack Pattern Name
CAPEC-133 Try All Common Switches
CAPEC-190 Reverse Engineer an Executable to Expose Assumed Hidden Functionality

 Content History

 Submissions
Submission Date Submitter Organization
2012-12-28 CWE Content Team MITRE

About CWE List Scoring Mapping Guidance Community News

https://cwe.mitre.org/index.html
https://cwe.mitre.org/top25/
https://cwe.mitre.org/scoring/lists/2021_CWE_MIHW.html
https://cwe.mitre.org/index.html
https://cwe.mitre.org/find/index.html
javascript:toggleblocksOC('912_Description');
javascript:toggleblocksOC('912_Extended_Description');
javascript:toggleblocksOC('912_Relationships');
javascript:toggleblocksOC('912_1000_relevant_table');
https://cwe.mitre.org/data/definitions/684.html
https://cwe.mitre.org/data/definitions/506.html
javascript:toggleblocksOC('912_Modes_Of_Introduction');
javascript:toggleblocksOC('912_Common_Consequences');
javascript:toggleblocksOC('912_Potential_Mitigations');
javascript:toggleblocksOC('912_Memberships');
https://cwe.mitre.org/data/definitions/1371.html
javascript:toggleblocksOC('912_Related_Attack_Patterns');
http://capec.mitre.org/data/definitions/133.html
http://capec.mitre.org/data/definitions/190.html
javascript:toggleblocksOC('912_Content_History');
javascript:toggleblocksOC('912_Submissions');
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/scoring/index.html
https://cwe.mitre.org/documents/cwe_usage/guidance.html
https://cwe.mitre.org/community/index.html
https://cwe.mitre.org/news/index.html


6/9/22, 11:40 AM CWE - CWE-912: Hidden Functionality (4.7)

https://cwe.mitre.org/data/definitions/912.html 2/2

 Submissions
 Modifications

javascript:toggleblocksOC('912_Submissions');
javascript:toggleblocksOC('912_Modifications');


6/9/22, 11:41 AM CWE - CWE-424: Improper Protection of Alternate Path (4.7)

https://cwe.mitre.org/data/definitions/424.html 1/2

Common Weakness EnumerationCommon Weakness Enumeration
A Community-Developed List of Software & Hardware Weakness TypesA Community-Developed List of Software & Hardware Weakness Types

Home 
 
 
 
 
 
 
 Search

CWE-424: Improper Protection of Alternate Path
Weakness ID: 424
Abstraction: Class
Structure: Simple

Presentation Filter: Complete

 Description
The product does not sufficiently protect all possible paths that a user can take to access restricted functionality or
resources.

 Relationships
 Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name
ChildOf 693 Protection Mechanism Failure
ChildOf 638 Not Using Complete Mediation
ParentOf 425 Direct Request ('Forced Browsing')

 Modes Of Introduction

Phase Note
Architecture and Design

 Applicable Platforms
Languages

Class: Language-Independent (Undetermined Prevalence)

 Common Consequences

Scope Impact Likelihood

Access Control Technical Impact: Bypass Protection Mechanism; Gain Privileges or Assume Identity

 Potential Mitigations

Phase: Architecture and Design
Deploy different layers of protection to implement security in depth.

 Memberships

Nature Type ID Name
MemberOf 945 SFP Secondary Cluster: Insecure Resource Access
MemberOf 1306 CISQ Quality Measures - Reliability
MemberOf 1308 CISQ Quality Measures - Security
MemberOf 1309 CISQ Quality Measures - Efficiency
MemberOf 1340 CISQ Data Protection Measures

 Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Alternate Path Errors
Software Fault Patterns SFP35 Insecure resource access

 Related Attack Patterns

CAPEC-ID Attack Pattern Name
CAPEC-127 Directory Indexing
CAPEC-554 Functionality Bypass

 Content History

 Submissions

About CWE List Scoring Mapping Guidance Community News

https://cwe.mitre.org/index.html
https://cwe.mitre.org/top25/
https://cwe.mitre.org/scoring/lists/2021_CWE_MIHW.html
https://cwe.mitre.org/index.html
https://cwe.mitre.org/find/index.html
javascript:toggleblocksOC('424_Description');
javascript:toggleblocksOC('424_Relationships');
javascript:toggleblocksOC('424_1000_relevant_table');
https://cwe.mitre.org/data/definitions/693.html
https://cwe.mitre.org/data/definitions/638.html
https://cwe.mitre.org/data/definitions/425.html
javascript:toggleblocksOC('424_Modes_Of_Introduction');
javascript:toggleblocksOC('424_Applicable_Platforms');
javascript:toggleblocksOC('424_Common_Consequences');
javascript:toggleblocksOC('424_Potential_Mitigations');
javascript:toggleblocksOC('424_Memberships');
https://cwe.mitre.org/data/definitions/945.html
https://cwe.mitre.org/data/definitions/1306.html
https://cwe.mitre.org/data/definitions/1308.html
https://cwe.mitre.org/data/definitions/1309.html
https://cwe.mitre.org/data/definitions/1340.html
javascript:toggleblocksOC('424_Taxonomy_Mappings');
javascript:toggleblocksOC('424_Related_Attack_Patterns');
http://capec.mitre.org/data/definitions/127.html
http://capec.mitre.org/data/definitions/554.html
javascript:toggleblocksOC('424_Content_History');
javascript:toggleblocksOC('424_Submissions');
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/scoring/index.html
https://cwe.mitre.org/documents/cwe_usage/guidance.html
https://cwe.mitre.org/community/index.html
https://cwe.mitre.org/news/index.html


6/9/22, 11:41 AM CWE - CWE-424: Improper Protection of Alternate Path (4.7)

https://cwe.mitre.org/data/definitions/424.html 2/2

 Submissions
Submission Date Submitter Organization
2006-07-19 PLOVER

 Modifications
 Previous Entry Names

javascript:toggleblocksOC('424_Submissions');
javascript:toggleblocksOC('424_Modifications');
javascript:toggleblocksOC('424_Previous_Entry_Names');


6/9/22, 11:41 AM CWE - CWE-24: Path Traversal: '../filedir' (4.7)

https://cwe.mitre.org/data/definitions/24.html 1/2

Common Weakness EnumerationCommon Weakness Enumeration
A Community-Developed List of Software & Hardware Weakness TypesA Community-Developed List of Software & Hardware Weakness Types

Home 
 
 
 
 
 
 
 Search

CWE-24: Path Traversal: '../filedir'
Weakness ID: 24
Abstraction: Variant
Structure: Simple

Presentation Filter: Complete

 Description
The software uses external input to construct a pathname that should be within a restricted directory, but it does
not properly neutralize "../" sequences that can resolve to a location that is outside of that directory.

 Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of the restricted
directory.
The "../" manipulation is the canonical manipulation for operating systems that use "/" as directory separators,
such as UNIX- and Linux-based systems. In some cases, it is useful for bypassing protection schemes in
environments for which "/" is supported but not the primary separator, such as Windows, which uses "\" but can
also accept "/".

 Relationships
 Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name
ChildOf 23 Relative Path Traversal

 Modes Of Introduction

Phase Note
Architecture and Design
Implementation

 Applicable Platforms
Languages

Class: Language-Independent (Undetermined Prevalence)

 Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity

Technical Impact: Read Files or Directories; Modify Files or Directories

 Potential Mitigations

Phase: Implementation
Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of
acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to
specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input,
the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and
conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid
because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain
colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one
undesirable input, especially if the code's environment changes. This can give attackers enough room to
bypass the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright.
When validating filenames, use stringent allowlists that limit the character set to be used. If feasible, only
allow a single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help to avoid CWE-
434.

About CWE List Scoring Mapping Guidance Community News

https://cwe.mitre.org/index.html
https://cwe.mitre.org/top25/
https://cwe.mitre.org/scoring/lists/2021_CWE_MIHW.html
https://cwe.mitre.org/index.html
https://cwe.mitre.org/find/index.html
javascript:toggleblocksOC('24_Description');
javascript:toggleblocksOC('24_Extended_Description');
javascript:toggleblocksOC('24_Relationships');
javascript:toggleblocksOC('24_1000_relevant_table');
https://cwe.mitre.org/data/definitions/23.html
javascript:toggleblocksOC('24_Modes_Of_Introduction');
javascript:toggleblocksOC('24_Applicable_Platforms');
javascript:toggleblocksOC('24_Common_Consequences');
javascript:toggleblocksOC('24_Potential_Mitigations');
https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/36.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/scoring/index.html
https://cwe.mitre.org/documents/cwe_usage/guidance.html
https://cwe.mitre.org/community/index.html
https://cwe.mitre.org/news/index.html


6/9/22, 11:41 AM CWE - CWE-24: Path Traversal: '../filedir' (4.7)

https://cwe.mitre.org/data/definitions/24.html 2/2

Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters. This is
equivalent to a denylist, which may be incomplete (CWE-184). For example, filtering "/" is insufficient
protection if the filesystem also supports the use of "\" as a directory separator. Another possible error could
occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For example, if
"../" sequences are removed from the ".../...//" string in a sequential fashion, two instances of "../" would be
removed from the original string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy: Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation before being
validated (CWE-180). Make sure that the application does not decode the same input twice (CWE-174). Such
errors could be used to bypass allowlist validation schemes by introducing dangerous inputs after they have
been checked.

 Memberships

Nature Type ID Name
MemberOf 981 SFP Secondary Cluster: Path Traversal

 Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER '../filedir
Software Fault Patterns SFP16 Path Traversal

 Content History

 Submissions
Submission Date Submitter Organization
2006-07-19 PLOVER

 Modifications
 Previous Entry Names

https://cwe.mitre.org/data/definitions/184.html
https://cwe.mitre.org/data/definitions/182.html
https://cwe.mitre.org/data/definitions/180.html
https://cwe.mitre.org/data/definitions/174.html
javascript:toggleblocksOC('24_Memberships');
https://cwe.mitre.org/data/definitions/981.html
javascript:toggleblocksOC('24_Taxonomy_Mappings');
javascript:toggleblocksOC('24_Content_History');
javascript:toggleblocksOC('24_Submissions');
javascript:toggleblocksOC('24_Modifications');
javascript:toggleblocksOC('24_Previous_Entry_Names');


6/9/22, 11:41 AM CWE - CWE-250: Execution with Unnecessary Privileges (4.7)

https://cwe.mitre.org/data/definitions/250.html 1/6

Common Weakness EnumerationCommon Weakness Enumeration
A Community-Developed List of Software & Hardware Weakness TypesA Community-Developed List of Software & Hardware Weakness Types

Home 
 
 
 
 
 
 
 Search

CWE-250: Execution with Unnecessary Privileges
Weakness ID: 250
Abstraction: Base
Structure: Simple

Presentation Filter: Complete

 Description
The software performs an operation at a privilege level that is higher than the minimum level required, which
creates new weaknesses or amplifies the consequences of other weaknesses.

 Extended Description
New weaknesses can be exposed because running with extra privileges, such as root or Administrator, can disable
the normal security checks being performed by the operating system or surrounding environment. Other pre-
existing weaknesses can turn into security vulnerabilities if they occur while operating at raised privileges.
Privilege management functions can behave in some less-than-obvious ways, and they have different quirks on
different platforms. These inconsistencies are particularly pronounced if you are transitioning from one non-root
user to another. Signal handlers and spawned processes run at the privilege of the owning process, so if a process
is running as root when a signal fires or a sub-process is executed, the signal handler or sub-process will operate
with root privileges.

 Relationships
 Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name
ChildOf 269 Improper Privilege Management
ChildOf 657 Violation of Secure Design Principles

 Relevant to the view "Software Development" (CWE-699)
Nature Type ID Name
MemberOf 265 Privilege Issues

 Relevant to the view "Architectural Concepts" (CWE-1008)
 Modes Of Introduction

Phase Note

Implementation
REALIZATION: This weakness is caused during implementation of an architectural
security tactic.

Installation

Architecture and Design

If an application has this design problem, then it can be easier for the developer to
make implementation-related errors such as CWE-271 (Privilege Dropping / Lowering
Errors). In addition, the consequences of Privilege Chaining (CWE-268) can become
more severe.

Operation

 Applicable Platforms
Languages

Class: Language-Independent (Undetermined Prevalence)

Technologies
Class: Mobile (Undetermined Prevalence)

 Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Access Control

Technical Impact: Gain Privileges or Assume Identity; Execute Unauthorized Code or Commands;
Read Application Data; DoS: Crash, Exit, or Restart

An attacker will be able to gain access to any resources that are allowed by the
extra privileges. Common results include executing code, disabling services, and
reading restricted data.

About CWE List Scoring Mapping Guidance Community News

https://cwe.mitre.org/index.html
https://cwe.mitre.org/top25/
https://cwe.mitre.org/scoring/lists/2021_CWE_MIHW.html
https://cwe.mitre.org/index.html
https://cwe.mitre.org/find/index.html
javascript:toggleblocksOC('250_Description');
javascript:toggleblocksOC('250_Extended_Description');
javascript:toggleblocksOC('250_Relationships');
javascript:toggleblocksOC('250_1000_relevant_table');
https://cwe.mitre.org/data/definitions/269.html
https://cwe.mitre.org/data/definitions/657.html
javascript:toggleblocksOC('250_699_relevant_table');
https://cwe.mitre.org/data/definitions/265.html
javascript:toggleblocksOC('250_1008_relevant_table');
javascript:toggleblocksOC('250_Modes_Of_Introduction');
https://cwe.mitre.org/data/definitions/271.html
https://cwe.mitre.org/data/definitions/268.html
javascript:toggleblocksOC('250_Applicable_Platforms');
javascript:toggleblocksOC('250_Common_Consequences');
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/scoring/index.html
https://cwe.mitre.org/documents/cwe_usage/guidance.html
https://cwe.mitre.org/community/index.html
https://cwe.mitre.org/news/index.html


6/9/22, 11:41 AM CWE - CWE-250: Execution with Unnecessary Privileges (4.7)

https://cwe.mitre.org/data/definitions/250.html 2/6

 Likelihood Of Exploit
Medium

 Demonstrative Examples
Example 1
This code temporarily raises the program's privileges to allow creation of a new user folder.

While the program only raises its privilege level to create the folder and immediately lowers it again, if the call to
os.mkdir() throws an exception, the call to lowerPrivileges() will not occur. As a result, the program is indefinitely
operating in a raised privilege state, possibly allowing further exploitation to occur.
Example 2
The following code calls chroot() to restrict the application to a subset of the filesystem below APP_HOME in order
to prevent an attacker from using the program to gain unauthorized access to files located elsewhere. The code
then opens a file specified by the user and processes the contents of the file.

Constraining the process inside the application's home directory before opening any files is a valuable security
measure. However, the absence of a call to setuid() with some non-zero value means the application is continuing
to operate with unnecessary root privileges. Any successful exploit carried out by an attacker against the
application can now result in a privilege escalation attack because any malicious operations will be performed with
the privileges of the superuser. If the application drops to the privilege level of a non-root user, the potential for
damage is substantially reduced.
Example 3
This application intends to use a user's location to determine the timezone the user is in:

This is unnecessary use of the location API, as this information is already available using the Android Time API.
Always be sure there is not another way to obtain needed information before resorting to using the location API.
Example 4
This code uses location to determine the user's current US State location.
First the application must declare that it requires the ACCESS_FINE_LOCATION permission in the application's
manifest.xml:

(bad code)Example Language: Python 

def makeNewUserDir(username):
if invalidUsername(username):

#avoid CWE-22 and CWE-78 
print('Usernames cannot contain invalid characters')
return False

try:
raisePrivileges()
os.mkdir('/home/' + username)
lowerPrivileges()

except OSError:
print('Unable to create new user directory for user:' + username)
return False

return True

(bad code)Example Language: C 

chroot(APP_HOME);
chdir("/");
FILE* data = fopen(argv[1], "r+");
...

(bad code)Example Language: Java 

locationClient = new LocationClient(this, this, this);
locationClient.connect();
Location userCurrLocation;
userCurrLocation = locationClient.getLastLocation();
setTimeZone(userCurrLocation);

(bad code)Example Language: XML 

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

javascript:toggleblocksOC('250_Likelihood_Of_Exploit');
javascript:toggleblocksOC('250_Demonstrative_Examples');
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/78.html


6/9/22, 11:41 AM CWE - CWE-250: Execution with Unnecessary Privileges (4.7)

https://cwe.mitre.org/data/definitions/250.html 3/6

During execution, a call to getLastLocation() will return a location based on the application's location permissions.
In this case the application has permission for the most accurate location possible:

While the application needs this information, it does not need to use the ACCESS_FINE_LOCATION permission, as
the ACCESS_COARSE_LOCATION permission will be sufficient to identify which US state the user is in.

 Observed Examples

Reference Description
CVE-2007-4217 FTP client program on a certain OS runs with setuid privileges and has a buffer

overflow. Most clients do not need extra privileges, so an overflow is not a vulnerability
for those clients.

CVE-2008-1877 Program runs with privileges and calls another program with the same privileges, which
allows read of arbitrary files.

CVE-2007-5159 OS incorrectly installs a program with setuid privileges, allowing users to gain
privileges.

CVE-2008-4638 Composite: application running with high privileges (CWE-250) allows user to specify a
restricted file to process, which generates a parsing error that leaks the contents of the
file (CWE-209).

CVE-2008-0162 Program does not drop privileges before calling another program, allowing code
execution.

CVE-2008-0368 setuid root program allows creation of arbitrary files through command line argument.
CVE-2007-3931 Installation script installs some programs as setuid when they shouldn't be.
CVE-2020-3812 mail program runs as root but does not drop its privileges before attempting to access

a file. Attacker can use a symlink from their home directory to a directory only readable
by root, then determine whether the file exists based on the response.

 Potential Mitigations

Phases: Architecture and Design; Operation
Strategy: Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If
possible, create isolated accounts with limited privileges that are only used for a single task. That way, a
successful attack will not immediately give the attacker access to the rest of the software or its environment.
For example, database applications rarely need to run as the database administrator, especially in day-to-day
operations.

Phase: Architecture and Design
Strategy: Separation of Privilege

Identify the functionality that requires additional privileges, such as access to privileged operating system
resources. Wrap and centralize this functionality if possible, and isolate the privileged code as much as
possible from other code [REF-76]. Raise privileges as late as possible, and drop them as soon as possible to
avoid CWE-271. Avoid weaknesses such as CWE-288 and CWE-420 by protecting all possible communication
channels that could interact with the privileged code, such as a secondary socket that is only intended to be
accessed by administrators.

Phase: Architecture and Design
Strategy: Attack Surface Reduction

Identify the functionality that requires additional privileges, such as access to privileged operating system
resources. Wrap and centralize this functionality if possible, and isolate the privileged code as much as
possible from other code [REF-76]. Raise privileges as late as possible, and drop them as soon as possible to
avoid CWE-271. Avoid weaknesses such as CWE-288 and CWE-420 by protecting all possible communication
channels that could interact with the privileged code, such as a secondary socket that is only intended to be
accessed by administrators.

Phase: Implementation
Perform extensive input validation for any privileged code that must be exposed to the user and reject
anything that does not fit your strict requirements.

Phase: Implementation

(bad code)Example Language: Java 

locationClient = new LocationClient(this, this, this);
locationClient.connect();
Location userCurrLocation;
userCurrLocation = locationClient.getLastLocation();
deriveStateFromCoords(userCurrLocation);

javascript:toggleblocksOC('250_Observed_Examples');
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4217
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1877
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5159
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4638
https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/209.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0162
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0368
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3931
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-3812
javascript:toggleblocksOC('250_Potential_Mitigations');
https://cwe.mitre.org/data/definitions/271.html
https://cwe.mitre.org/data/definitions/288.html
https://cwe.mitre.org/data/definitions/420.html
https://cwe.mitre.org/data/definitions/271.html
https://cwe.mitre.org/data/definitions/288.html
https://cwe.mitre.org/data/definitions/420.html


6/9/22, 11:41 AM CWE - CWE-250: Execution with Unnecessary Privileges (4.7)

https://cwe.mitre.org/data/definitions/250.html 4/6

When dropping privileges, ensure that they have been dropped successfully to avoid CWE-273. As protection
mechanisms in the environment get stronger, privilege-dropping calls may fail even if it seems like they
would always succeed.

Phase: Implementation
If circumstances force you to run with extra privileges, then determine the minimum access level necessary.
First identify the different permissions that the software and its users will need to perform their actions, such
as file read and write permissions, network socket permissions, and so forth. Then explicitly allow those
actions while denying all else [REF-76]. Perform extensive input validation and canonicalization to minimize
the chances of introducing a separate vulnerability. This mitigation is much more prone to error than dropping
the privileges in the first place.

Phases: Operation; System Configuration
Strategy: Environment Hardening

Ensure that the software runs properly under the Federal Desktop Core Configuration (FDCC) [REF-199] or an
equivalent hardening configuration guide, which many organizations use to limit the attack surface and
potential risk of deployed software.

 Detection Methods

Manual Analysis
This weakness can be detected using tools and techniques that require manual (human) analysis, such as
penetration testing, threat modeling, and interactive tools that allow the tester to record and modify an active
session.
Note: These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Black Box
Use monitoring tools that examine the software's process as it interacts with the operating system and the
network. This technique is useful in cases when source code is unavailable, if the software was not developed
by you, or if you want to verify that the build phase did not introduce any new weaknesses. Examples include
debuggers that directly attach to the running process; system-call tracing utilities such as truss (Solaris) and
strace (Linux); system activity monitors such as FileMon, RegMon, Process Monitor, and other Sysinternals
utilities (Windows); and sniffers and protocol analyzers that monitor network traffic.
Attach the monitor to the process and perform a login. Look for library functions and system calls that
indicate when privileges are being raised or dropped. Look for accesses of resources that are restricted to
normal users.
Note: Note that this technique is only useful for privilege issues related to system resources. It is not likely to
detect application-level business rules that are related to privileges, such as if a blog system allows a user to
delete a blog entry without first checking that the user has administrator privileges.

Automated Static Analysis - Binary or Bytecode
According to SOAR, the following detection techniques may be useful:
Highly cost effective:

Compare binary / bytecode to application permission manifest

Cost effective for partial coverage:

Bytecode Weakness Analysis - including disassembler + source code weakness analysis
Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness: High

Manual Static Analysis - Binary or Bytecode
According to SOAR, the following detection techniques may be useful:
Cost effective for partial coverage:

Binary / Bytecode disassembler - then use manual analysis for vulnerabilities & anomalies

Effectiveness: SOAR Partial

Dynamic Analysis with Automated Results Interpretation
According to SOAR, the following detection techniques may be useful:
Cost effective for partial coverage:

Host-based Vulnerability Scanners - Examine configuration for flaws, verifying that audit
mechanisms work, ensure host configuration meets certain predefined criteria

https://cwe.mitre.org/data/definitions/273.html
javascript:toggleblocksOC('250_Detection_Methods');


6/9/22, 11:41 AM CWE - CWE-250: Execution with Unnecessary Privileges (4.7)

https://cwe.mitre.org/data/definitions/250.html 5/6

Effectiveness: SOAR Partial

Dynamic Analysis with Manual Results Interpretation
According to SOAR, the following detection techniques may be useful:
Cost effective for partial coverage:

Host Application Interface Scanner

Effectiveness: SOAR Partial

Manual Static Analysis - Source Code
According to SOAR, the following detection techniques may be useful:
Highly cost effective:

Manual Source Code Review (not inspections)

Cost effective for partial coverage:

Focused Manual Spotcheck - Focused manual analysis of source

Effectiveness: High

Automated Static Analysis - Source Code
According to SOAR, the following detection techniques may be useful:
Cost effective for partial coverage:

Source code Weakness Analyzer
Context-configured Source Code Weakness Analyzer

Effectiveness: SOAR Partial

Automated Static Analysis
According to SOAR, the following detection techniques may be useful:
Cost effective for partial coverage:

Configuration Checker
Permission Manifest Analysis

Effectiveness: SOAR Partial

Architecture or Design Review
According to SOAR, the following detection techniques may be useful:
Highly cost effective:

Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)
Formal Methods / Correct-By-Construction

Cost effective for partial coverage:

Attack Modeling

Effectiveness: High

 Memberships

Nature Type ID Name
MemberOf 227 7PK - API Abuse
MemberOf 753 2009 Top 25 - Porous Defenses
MemberOf 815 OWASP Top Ten 2010 Category A6 - Security Misconfiguration
MemberOf 858 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 15 -

Serialization (SER)
MemberOf 866 2011 Top 25 - Porous Defenses
MemberOf 884 CWE Cross-section
MemberOf 901 SFP Primary Cluster: Privilege

 Notes
Maintenance

javascript:toggleblocksOC('250_Memberships');
https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/753.html
https://cwe.mitre.org/data/definitions/815.html
https://cwe.mitre.org/data/definitions/858.html
https://cwe.mitre.org/data/definitions/866.html
https://cwe.mitre.org/data/definitions/884.html
https://cwe.mitre.org/data/definitions/901.html
javascript:toggleblocksOC('250_Notes');


6/9/22, 11:41 AM CWE - CWE-250: Execution with Unnecessary Privileges (4.7)

https://cwe.mitre.org/data/definitions/250.html 6/6

CWE-271, CWE-272, and CWE-250 are all closely related and possibly overlapping. CWE-271 is probably better
suited as a category. Both CWE-272 and CWE-250 are in active use by the community. The "least privilege"
phrase has multiple interpretations.

Relationship
There is a close association with CWE-653 (Insufficient Separation of Privileges). CWE-653 is about providing
separate components for each privilege; CWE-250 is about ensuring that each component has the least amount
of privileges possible.
 Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Often Misused: Privilege Management
The CERT Oracle Secure
Coding Standard for Java
(2011)

SER09-J Minimize privileges before deserializing from a privilege
context

 Related Attack Patterns

CAPEC-ID Attack Pattern Name
CAPEC-104 Cross Zone Scripting
CAPEC-470 Expanding Control over the Operating System from the Database
CAPEC-69 Target Programs with Elevated Privileges

 References

[REF-6] Katrina Tsipenyuk, Brian Chess
and Gary McGraw. "Seven Pernicious Kingdoms: A Taxonomy of
Software Security Errors". NIST Workshop on Software Security Assurance Tools Techniques and Metrics. NIST.
2005-11-07. <https://samate.nist.gov/SSATTM_Content/papers/Seven%20Pernicious%20Kingdoms%20-
%20Taxonomy%20of%20Sw%20Security%20Errors%20-%20Tsipenyuk%20-%20Chess%20-
%20McGraw.pdf>.

[REF-196] Jerome H. Saltzer and
Michael D. Schroeder. "The Protection of Information in Computer Systems".
Proceedings of the IEEE 63. 1975-09. <http://web.mit.edu/Saltzer/www/publications/protection/>.

[REF-76] Sean Barnum and
Michael Gegick. "Least Privilege". 2005-09-14. <https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/principles/351.html>.

[REF-7] Michael Howard and
David LeBlanc. "Writing Secure Code". Chapter 7, "Running with Least Privilege"
Page 207. 2nd Edition. Microsoft Press. 2002-12-04. <https://www.microsoftpressstore.com/store/writing-
secure-code-9780735617223>.

[REF-199] NIST. "Federal Desktop Core Configuration". <http://nvd.nist.gov/fdcc/index.cfm>.

[REF-44] Michael Howard, David LeBlanc
and John Viega. "24 Deadly Sins of Software Security". "Sin 16:
Executing Code With Too Much Privilege." Page 243. McGraw-Hill. 2010.

[REF-62] Mark Dowd, John McDonald
and Justin Schuh. "The Art of Software Security Assessment". Chapter 9,
"Privilege Vulnerabilities", Page 477. 1st Edition. Addison Wesley. 2006.

 Content History

 Submissions
Submission Date Submitter Organization
2006-07-19 7 Pernicious Kingdoms

 Modifications
 Previous Entry Names

https://cwe.mitre.org/data/definitions/271.html
https://cwe.mitre.org/data/definitions/272.html
https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/271.html
https://cwe.mitre.org/data/definitions/272.html
https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/653.html
https://cwe.mitre.org/data/definitions/653.html
https://cwe.mitre.org/data/definitions/250.html
javascript:toggleblocksOC('250_Taxonomy_Mappings');
javascript:toggleblocksOC('250_Related_Attack_Patterns');
http://capec.mitre.org/data/definitions/104.html
http://capec.mitre.org/data/definitions/470.html
http://capec.mitre.org/data/definitions/69.html
javascript:toggleblocksOC('250_References');
https://samate.nist.gov/SSATTM_Content/papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf
http://web.mit.edu/Saltzer/www/publications/protection/
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html
https://www.microsoftpressstore.com/store/writing-secure-code-9780735617223
http://nvd.nist.gov/fdcc/index.cfm
javascript:toggleblocksOC('250_Content_History');
javascript:toggleblocksOC('250_Submissions');
javascript:toggleblocksOC('250_Modifications');
javascript:toggleblocksOC('250_Previous_Entry_Names');


6/9/22, 11:42 AM CWE - CWE-290: Authentication Bypass by Spoofing (4.7)

https://cwe.mitre.org/data/definitions/290.html 1/3

Common Weakness EnumerationCommon Weakness Enumeration
A Community-Developed List of Software & Hardware Weakness TypesA Community-Developed List of Software & Hardware Weakness Types

Home 
 
 
 
 
 
 
 Search

CWE-290: Authentication Bypass by Spoofing
Weakness ID: 290
Abstraction: Base
Structure: Simple

Presentation Filter: Complete

 Description
This attack-focused weakness is caused by improperly implemented authentication schemes that are subject to
spoofing attacks.

 Relationships
 Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name
ChildOf 287 Improper Authentication
ParentOf 291 Reliance on IP Address for Authentication
ParentOf 293 Using Referer Field for Authentication
ParentOf 350 Reliance on Reverse DNS Resolution for a Security-Critical Action
PeerOf 602 Client-Side Enforcement of Server-Side Security

 Relevant to the view "Software Development" (CWE-699)
Nature Type ID Name
MemberOf 1211 Authentication Errors

 Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-
1003)

 Relevant to the view "Architectural Concepts" (CWE-1008)
 Modes Of Introduction

Phase Note

Architecture and Design COMMISSION: This weakness refers to an incorrect design related to an architectural
security tactic.

Implementation

 Common Consequences

Scope Impact Likelihood

Access Control
Technical Impact: Bypass Protection Mechanism; Gain Privileges or Assume Identity

This weakness can allow an attacker to access resources which are not otherwise
accessible without proper authentication.

 Demonstrative Examples
Example 1
The following code authenticates users.

The authentication mechanism implemented relies on an IP address for source validation. If an attacker is able to
spoof the IP, they may be able to bypass the authentication mechanism.
Example 2
Both of these examples check if a request is from a trusted address before responding to the request.

About CWE List Scoring Mapping Guidance Community News

(bad code)Example Language: Java 

String sourceIP = request.getRemoteAddr();
if (sourceIP != null && sourceIP.equals(APPROVED_IP)) {
authenticated = true;

}

(bad code)Example Language: C 

https://cwe.mitre.org/index.html
https://cwe.mitre.org/top25/
https://cwe.mitre.org/scoring/lists/2021_CWE_MIHW.html
https://cwe.mitre.org/index.html
https://cwe.mitre.org/find/index.html
javascript:toggleblocksOC('290_Description');
javascript:toggleblocksOC('290_Relationships');
javascript:toggleblocksOC('290_1000_relevant_table');
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/291.html
https://cwe.mitre.org/data/definitions/293.html
https://cwe.mitre.org/data/definitions/350.html
https://cwe.mitre.org/data/definitions/602.html
javascript:toggleblocksOC('290_699_relevant_table');
https://cwe.mitre.org/data/definitions/1211.html
javascript:toggleblocksOC('290_1003_relevant_table');
javascript:toggleblocksOC('290_1008_relevant_table');
javascript:toggleblocksOC('290_Modes_Of_Introduction');
javascript:toggleblocksOC('290_Common_Consequences');
javascript:toggleblocksOC('290_Demonstrative_Examples');
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/scoring/index.html
https://cwe.mitre.org/documents/cwe_usage/guidance.html
https://cwe.mitre.org/community/index.html
https://cwe.mitre.org/news/index.html


6/9/22, 11:42 AM CWE - CWE-290: Authentication Bypass by Spoofing (4.7)

https://cwe.mitre.org/data/definitions/290.html 2/3

The code only verifies the address as stored in the request packet. An attacker can spoof this address, thus
impersonating a trusted client.
Example 3
The following code samples use a DNS lookup in order to decide whether or not an inbound request is from a
trusted host. If an attacker can poison the DNS cache, they can gain trusted status.

IP addresses are more reliable than DNS names, but they can also be spoofed. Attackers can easily forge the
source IP address of the packets they send, but response packets will return to the forged IP address. To see the
response packets, the attacker has to sniff the traffic between the victim machine and the forged IP address. In
order to accomplish the required sniffing, attackers typically attempt to locate themselves on the same subnet as
the victim machine. Attackers may be able to circumvent this requirement by using source routing, but source
routing is disabled across much of the Internet today. In summary, IP address verification can be a useful part of
an authentication scheme, but it should not be the single factor required for authentication.

sd = socket(AF_INET, SOCK_DGRAM, 0);
serv.sin_family = AF_INET;
serv.sin_addr.s_addr = htonl(INADDR_ANY);
servr.sin_port = htons(1008);
bind(sd, (struct sockaddr *) & serv, sizeof(serv));

while (1) {
memset(msg, 0x0, MAX_MSG);
clilen = sizeof(cli);
if (inet_ntoa(cli.sin_addr)==getTrustedAddress()) {
n = recvfrom(sd, msg, MAX_MSG, 0, (struct sockaddr *) & cli, &clilen);

}
}

(bad code)Example Language: Java 

while(true) {
DatagramPacket rp=new DatagramPacket(rData,rData.length);
outSock.receive(rp);
String in = new String(p.getData(),0, rp.getLength());
InetAddress clientIPAddress = rp.getAddress();
int port = rp.getPort();

if (isTrustedAddress(clientIPAddress) & secretKey.equals(in)) {
out = secret.getBytes();
DatagramPacket sp =new DatagramPacket(out,out.length, IPAddress, port); outSock.send(sp);

}
}

(bad code)Example Language: C 

struct hostent *hp;struct in_addr myaddr;
char* tHost = "trustme.example.com";
myaddr.s_addr=inet_addr(ip_addr_string);

hp = gethostbyaddr((char *) &myaddr, sizeof(struct in_addr), AF_INET);
if (hp && !strncmp(hp->h_name, tHost, sizeof(tHost))) {
trusted = true;

} else {
trusted = false;

}

(bad code)Example Language: Java 

String ip = request.getRemoteAddr();
InetAddress addr = InetAddress.getByName(ip);
if (addr.getCanonicalHostName().endsWith("trustme.com")) {
trusted = true;

}

(bad code)Example Language: C# 

IPAddress hostIPAddress = IPAddress.Parse(RemoteIpAddress);
IPHostEntry hostInfo = Dns.GetHostByAddress(hostIPAddress);
if (hostInfo.HostName.EndsWith("trustme.com")) {
trusted = true;

}



6/9/22, 11:42 AM CWE - CWE-290: Authentication Bypass by Spoofing (4.7)

https://cwe.mitre.org/data/definitions/290.html 3/3

 Observed Examples

Reference Description
CVE-2009-1048 VOIP product allows authentication bypass using 127.0.0.1 in the Host header.

 Memberships

Nature Type ID Name
MemberOf 884 CWE Cross-section
MemberOf 956 SFP Secondary Cluster: Channel Attack
MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 - Identification and Authentication

Failures

 Notes
Relationship
This can be resultant from insufficient verification.
 Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Authentication bypass by spoofing

 Related Attack Patterns

CAPEC-ID Attack Pattern Name
CAPEC-21 Exploitation of Trusted Identifiers
CAPEC-22 Exploiting Trust in Client
CAPEC-459 Creating a Rogue Certification Authority Certificate
CAPEC-461 Web Services API Signature Forgery Leveraging Hash Function Extension Weakness
CAPEC-473 Signature Spoof
CAPEC-476 Signature Spoofing by Misrepresentation
CAPEC-59 Session Credential Falsification through Prediction
CAPEC-60 Reusing Session IDs (aka Session Replay)
CAPEC-667 Bluetooth Impersonation AttackS (BIAS)
CAPEC-94 Adversary in the Middle (AiTM)

 References

[REF-62] Mark Dowd, John McDonald
and Justin Schuh. "The Art of Software Security Assessment". Chapter 3,
"Spoofing and Identification", Page 72. 1st Edition. Addison Wesley. 2006.

 Content History

 Submissions
Submission Date Submitter Organization
2006-07-19 PLOVER

 Modifications

javascript:toggleblocksOC('290_Observed_Examples');
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1048
javascript:toggleblocksOC('290_Memberships');
https://cwe.mitre.org/data/definitions/884.html
https://cwe.mitre.org/data/definitions/956.html
https://cwe.mitre.org/data/definitions/1353.html
javascript:toggleblocksOC('290_Notes');
javascript:toggleblocksOC('290_Taxonomy_Mappings');
javascript:toggleblocksOC('290_Related_Attack_Patterns');
http://capec.mitre.org/data/definitions/21.html
http://capec.mitre.org/data/definitions/22.html
http://capec.mitre.org/data/definitions/459.html
http://capec.mitre.org/data/definitions/461.html
http://capec.mitre.org/data/definitions/473.html
http://capec.mitre.org/data/definitions/476.html
http://capec.mitre.org/data/definitions/59.html
http://capec.mitre.org/data/definitions/60.html
http://capec.mitre.org/data/definitions/667.html
http://capec.mitre.org/data/definitions/94.html
javascript:toggleblocksOC('290_References');
javascript:toggleblocksOC('290_Content_History');
javascript:toggleblocksOC('290_Submissions');
javascript:toggleblocksOC('290_Modifications');


6/9/22, 11:42 AM CWE - CWE-266: Incorrect Privilege Assignment (4.7)

https://cwe.mitre.org/data/definitions/266.html 1/3

Common Weakness EnumerationCommon Weakness Enumeration
A Community-Developed List of Software & Hardware Weakness TypesA Community-Developed List of Software & Hardware Weakness Types

Home 
 
 
 
 
 
 
 Search

CWE-266: Incorrect Privilege Assignment
Weakness ID: 266
Abstraction: Base
Structure: Simple

Presentation Filter: Complete

 Description
A product incorrectly assigns a privilege to a particular actor, creating an unintended sphere of control for that
actor.

 Relationships
 Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name
ChildOf 269 Improper Privilege Management
ParentOf 9 J2EE Misconfiguration: Weak Access Permissions for EJB Methods
ParentOf 520 .NET Misconfiguration: Use of Impersonation
ParentOf 556 ASP.NET Misconfiguration: Use of Identity Impersonation
ParentOf 1022 Use of Web Link to Untrusted Target with window.opener Access
CanAlsoBe 286 Incorrect User Management

 Relevant to the view "Software Development" (CWE-699)
Nature Type ID Name
MemberOf 265 Privilege Issues

 Relevant to the view "Architectural Concepts" (CWE-1008)
 Modes Of Introduction

Phase Note
Architecture and Design

Implementation REALIZATION: This weakness is caused during implementation of an architectural
security tactic.

 Applicable Platforms
Languages

Class: Language-Independent (Undetermined Prevalence)

 Common Consequences

Scope Impact Likelihood

Access Control
Technical Impact: Gain Privileges or Assume Identity

A user can access restricted functionality and/or sensitive information that may
include administrative functionality and user accounts.

 Demonstrative Examples
Example 1
The following example demonstrates the weakness.

Example 2
The following example demonstrates the weakness.

About CWE List Scoring Mapping Guidance Community News

(bad code)Example Language: C 

seteuid(0);
/* do some stuff */


seteuid(getuid());

https://cwe.mitre.org/index.html
https://cwe.mitre.org/top25/
https://cwe.mitre.org/scoring/lists/2021_CWE_MIHW.html
https://cwe.mitre.org/index.html
https://cwe.mitre.org/find/index.html
javascript:toggleblocksOC('266_Description');
javascript:toggleblocksOC('266_Relationships');
javascript:toggleblocksOC('266_1000_relevant_table');
https://cwe.mitre.org/data/definitions/269.html
https://cwe.mitre.org/data/definitions/9.html
https://cwe.mitre.org/data/definitions/520.html
https://cwe.mitre.org/data/definitions/556.html
https://cwe.mitre.org/data/definitions/1022.html
https://cwe.mitre.org/data/definitions/286.html
javascript:toggleblocksOC('266_699_relevant_table');
https://cwe.mitre.org/data/definitions/265.html
javascript:toggleblocksOC('266_1008_relevant_table');
javascript:toggleblocksOC('266_Modes_Of_Introduction');
javascript:toggleblocksOC('266_Applicable_Platforms');
javascript:toggleblocksOC('266_Common_Consequences');
javascript:toggleblocksOC('266_Demonstrative_Examples');
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/scoring/index.html
https://cwe.mitre.org/documents/cwe_usage/guidance.html
https://cwe.mitre.org/community/index.html
https://cwe.mitre.org/news/index.html


6/9/22, 11:42 AM CWE - CWE-266: Incorrect Privilege Assignment (4.7)

https://cwe.mitre.org/data/definitions/266.html 2/3

Example 3
This application sends a special intent with a flag that allows the receiving application to read a data file for
backup purposes.

Any malicious application can register to receive this intent. Because of the
FLAG_GRANT_READ_URI_PERMISSION included with the intent, the malicious receiver code can read the user's
data.

 Observed Examples

Reference Description
CVE-1999-1193 untrusted user placed in unix "wheel" group
CVE-2005-2741 Product allows users to grant themselves certain rights that can be used to escalate

privileges.
CVE-2005-2496 Product uses group ID of a user instead of the group, causing it to run with different

privileges. This is resultant from some other unknown issue.
CVE-2004-0274 Product mistakenly assigns a particular status to an entity, leading to increased

privileges.

 Potential Mitigations

Phases: Architecture and Design; Operation
Very carefully manage the setting, management, and handling of privileges. Explicitly manage trust zones in
the software.

Phases: Architecture and Design; Operation
Strategy: Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If
possible, create isolated accounts with limited privileges that are only used for a single task. That way, a
successful attack will not immediately give the attacker access to the rest of the software or its environment.
For example, database applications rarely need to run as the database administrator, especially in day-to-day
operations.

 Weakness Ordinalities

Ordinality Description
Resultant (where the weakness is typically related to the presence of some other weaknesses)

 Affected Resources

System Process

 Memberships

(bad code)Example Language: Java 

AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {
// privileged code goes here, for example:

System.loadLibrary("awt");
return null;
// nothing to return


}

(bad code)Example Language: Java 

Intent intent = new Intent();
intent.setAction("com.example.BackupUserData");
intent.setData(file_uri);
intent.addFlags(FLAG_GRANT_READ_URI_PERMISSION);
sendBroadcast(intent);

(attack code)Example Language: Java 

public class CallReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {
Uri userData = intent.getData();
stealUserData(userData);

}
}

javascript:toggleblocksOC('266_Observed_Examples');
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1193
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2741
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2496
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0274
javascript:toggleblocksOC('266_Potential_Mitigations');
javascript:toggleblocksOC('266_Weakness_Ordinalities');
javascript:toggleblocksOC('266_Affected_Resources');
javascript:toggleblocksOC('266_Memberships');


6/9/22, 11:42 AM CWE - CWE-266: Incorrect Privilege Assignment (4.7)

https://cwe.mitre.org/data/definitions/266.html 3/3

Nature Type ID Name
MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control
MemberOf 859 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 16 - Platform

Security (SEC)
MemberOf 884 CWE Cross-section
MemberOf 901 SFP Primary Cluster: Privilege
MemberOf 1149 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 15. Platform

Security (SEC)
MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure Design

 Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Incorrect Privilege Assignment
The CERT Oracle Secure
Coding Standard for Java
(2011)

SEC00-J Do not allow privileged blocks to leak sensitive information
across a trust boundary

The CERT Oracle Secure
Coding Standard for Java
(2011)

SEC01-J Do not allow tainted variables in privileged blocks

 References

[REF-76] Sean Barnum and
Michael Gegick. "Least Privilege". 2005-09-14. <https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/principles/351.html>.

 Content History

 Submissions
Submission Date Submitter Organization
2006-07-19 PLOVER

 Modifications

https://cwe.mitre.org/data/definitions/723.html
https://cwe.mitre.org/data/definitions/859.html
https://cwe.mitre.org/data/definitions/884.html
https://cwe.mitre.org/data/definitions/901.html
https://cwe.mitre.org/data/definitions/1149.html
https://cwe.mitre.org/data/definitions/1348.html
javascript:toggleblocksOC('266_Taxonomy_Mappings');
javascript:toggleblocksOC('266_References');
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html
javascript:toggleblocksOC('266_Content_History');
javascript:toggleblocksOC('266_Submissions');
javascript:toggleblocksOC('266_Modifications');


6/9/22, 11:42 AM CWE - CWE-346: Origin Validation Error (4.7)

https://cwe.mitre.org/data/definitions/346.html 1/3

Common Weakness EnumerationCommon Weakness Enumeration
A Community-Developed List of Software & Hardware Weakness TypesA Community-Developed List of Software & Hardware Weakness Types

Home 
 
 
 
 
 
 
 Search

CWE-346: Origin Validation Error
Weakness ID: 346
Abstraction: Base
Structure: Simple

Presentation Filter: Complete

 Description
The software does not properly verify that the source of data or communication is valid.

 Relationships
 Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name
ChildOf 284 Improper Access Control
ChildOf 345 Insufficient Verification of Data Authenticity
ParentOf 1385 Missing Origin Validation in WebSockets
PeerOf 451 User Interface (UI) Misrepresentation of Critical Information

 Relevant to the view "Software Development" (CWE-699)
Nature Type ID Name
MemberOf 1214 Data Integrity Issues
MemberOf 417 Communication Channel Errors

 Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-
1003)

 Relevant to the view "Architectural Concepts" (CWE-1008)
 Modes Of Introduction

Phase Note
Architecture and Design

Implementation REALIZATION: This weakness is caused during implementation of an architectural
security tactic.

 Applicable Platforms
Languages

Class: Language-Independent (Undetermined Prevalence)

 Common Consequences

Scope Impact Likelihood

Access Control
Other

Technical Impact: Gain Privileges or Assume Identity; Varies by Context

An attacker can access any functionality that is inadvertently accessible to the
source.

 Demonstrative Examples
Example 1
This Android application will remove a user account when it receives an intent to do so:

About CWE List Scoring Mapping Guidance Community News

(bad code)Example Language: Java 

IntentFilter filter = new IntentFilter("com.example.RemoveUser");
MyReceiver receiver = new MyReceiver();
registerReceiver(receiver, filter);

public class DeleteReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {
int userID = intent.getIntExtra("userID");
destroyUserData(userID);

}
}

https://cwe.mitre.org/index.html
https://cwe.mitre.org/top25/
https://cwe.mitre.org/scoring/lists/2021_CWE_MIHW.html
https://cwe.mitre.org/index.html
https://cwe.mitre.org/find/index.html
javascript:toggleblocksOC('346_Description');
javascript:toggleblocksOC('346_Relationships');
javascript:toggleblocksOC('346_1000_relevant_table');
https://cwe.mitre.org/data/definitions/284.html
https://cwe.mitre.org/data/definitions/345.html
https://cwe.mitre.org/data/definitions/1385.html
https://cwe.mitre.org/data/definitions/451.html
javascript:toggleblocksOC('346_699_relevant_table');
https://cwe.mitre.org/data/definitions/1214.html
https://cwe.mitre.org/data/definitions/417.html
javascript:toggleblocksOC('346_1003_relevant_table');
javascript:toggleblocksOC('346_1008_relevant_table');
javascript:toggleblocksOC('346_Modes_Of_Introduction');
javascript:toggleblocksOC('346_Applicable_Platforms');
javascript:toggleblocksOC('346_Common_Consequences');
javascript:toggleblocksOC('346_Demonstrative_Examples');
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/scoring/index.html
https://cwe.mitre.org/documents/cwe_usage/guidance.html
https://cwe.mitre.org/community/index.html
https://cwe.mitre.org/news/index.html


6/9/22, 11:42 AM CWE - CWE-346: Origin Validation Error (4.7)

https://cwe.mitre.org/data/definitions/346.html 2/3

This application does not check the origin of the intent, thus allowing any malicious application to remove a user.
Always check the origin of an intent, or create an allowlist of trusted applications using the manifest.xml file.
Example 2
These Android and iOS applications intercept URL loading within a WebView and perform special actions if a
particular URL scheme is used, thus allowing the Javascript within the WebView to communicate with the
application:

A call into native code can then be initiated by passing parameters within the URL:

Because the application does not check the source, a malicious website loaded within this WebView has the same
access to the API as a trusted site.

 Observed Examples

Reference Description
CVE-2000-1218 DNS server can accept DNS updates from hosts that it did not query, leading to cache

poisoning
CVE-2005-0877 DNS server can accept DNS updates from hosts that it did not query, leading to cache

poisoning
CVE-2001-1452 DNS server caches glue records received from non-delegated name servers
CVE-2005-2188 user ID obtained from untrusted source (URL)
CVE-2003-0174 LDAP service does not verify if a particular attribute was set by the LDAP server
CVE-1999-1549 product does not sufficiently distinguish external HTML from internal, potentially

dangerous HTML, allowing bypass using special strings in the page title. Overlaps
special elements.

CVE-2003-0981 product records the reverse DNS name of a visitor in the logs, allowing spoofing and
resultant XSS.

 Weakness Ordinalities

}

(bad code)Example Language: Java 

// Android

@Override
public boolean shouldOverrideUrlLoading(WebView view, String url){
if (url.substring(0,14).equalsIgnoreCase("examplescheme:")){
if(url.substring(14,25).equalsIgnoreCase("getUserInfo")){
writeDataToView(view, UserData);
return false;

}
else{
return true;

}
}

}

(bad code)Example Language: Objective-C 

// iOS

-(BOOL) webView:(UIWebView *)exWebView shouldStartLoadWithRequest:(NSURLRequest *)exRequest
navigationType:(UIWebViewNavigationType)exNavigationType
{
NSURL *URL = [exRequest URL];
if ([[URL scheme] isEqualToString:@"exampleScheme"])
{
NSString *functionString = [URL resourceSpecifier];
if ([functionString hasPrefix:@"specialFunction"])
{

// Make data available back in webview.

UIWebView *webView = [self writeDataToView:[URL query]];

}
return NO;

}
return YES;

}

(attack code)Example Language: JavaScript 

window.location = examplescheme://method?parameter=value

javascript:toggleblocksOC('346_Observed_Examples');
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1218
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0877
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1452
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2188
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0174
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1549
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0981
javascript:toggleblocksOC('346_Weakness_Ordinalities');


6/9/22, 11:42 AM CWE - CWE-346: Origin Validation Error (4.7)

https://cwe.mitre.org/data/definitions/346.html 3/3

Ordinality Description
Primary (where the weakness exists independent of other weaknesses)
Resultant (where the weakness is typically related to the presence of some other weaknesses)

 Memberships

Nature Type ID Name
MemberOf 949 SFP Secondary Cluster: Faulty Endpoint Authentication
MemberOf 1353 OWASP Top Ten 2021 Category A07:2021 - Identification and Authentication

Failures
MemberOf 1382 ICS Operations (& Maintenance): Emerging Energy Technologies

 Notes
Maintenance
This entry has some significant overlap with other CWE entries and may need some clarification. See terminology
notes.

Terminology
The "Origin Validation Error" term was originally used in a 1995 thesis [REF-324]. Although not formally defined,
an issue is considered to be an origin validation error if either (1) "an object [accepts] input from an
unauthorized subject," or (2) "the system [fails] to properly or completely authenticate a subject." A later section
says that an origin validation error can occur when the system (1) "does not properly authenticate a user or
process" or (2) "does not properly authenticate the shared data or libraries." The only example provided in the
thesis (covered by OSVDB:57615) involves a setuid program running command-line arguments without dropping
privileges. So, this definition (and its examples in the thesis) effectively cover other weaknesses such as CWE-
287 (Improper Authentication), CWE-285 (Improper Authorization), and CWE-250 (Execution with Unnecessary
Privileges). There appears to be little usage of this term today, except in the SecurityFocus vulnerability
database, where the term is used for a variety of issues, including web-browser problems that allow violation of
the Same Origin Policy and improper validation of the source of an incoming message.
 Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Origin Validation Error

 Related Attack Patterns

CAPEC-ID Attack Pattern Name
CAPEC-111 JSON Hijacking (aka JavaScript Hijacking)
CAPEC-141 Cache Poisoning
CAPEC-142 DNS Cache Poisoning
CAPEC-160 Exploit Script-Based APIs
CAPEC-21 Exploitation of Trusted Identifiers
CAPEC-384 Application API Message Manipulation via Man-in-the-Middle
CAPEC-385 Transaction or Event Tampering via Application API Manipulation
CAPEC-386 Application API Navigation Remapping
CAPEC-387 Navigation Remapping To Propagate Malicious Content
CAPEC-388 Application API Button Hijacking
CAPEC-510 SaaS User Request Forgery
CAPEC-59 Session Credential Falsification through Prediction
CAPEC-60 Reusing Session IDs (aka Session Replay)
CAPEC-75 Manipulating Writeable Configuration Files
CAPEC-76 Manipulating Web Input to File System Calls
CAPEC-89 Pharming

 References

[REF-324] Taimur Aslam. "A Taxonomy of Security Faults in the UNIX Operating System". 1995-08-01.
<http://cwe.mitre.org/documents/sources/ATaxonomyofSecurityFaultsintheUNIXOperatingSystem%5BAslam95
%5D.pdf>.

 Content History

 Submissions
Submission Date Submitter Organization
2006-07-19 PLOVER

 Modifications

javascript:toggleblocksOC('346_Memberships');
https://cwe.mitre.org/data/definitions/949.html
https://cwe.mitre.org/data/definitions/1353.html
https://cwe.mitre.org/data/definitions/1382.html
javascript:toggleblocksOC('346_Notes');
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/285.html
https://cwe.mitre.org/data/definitions/250.html
javascript:toggleblocksOC('346_Taxonomy_Mappings');
javascript:toggleblocksOC('346_Related_Attack_Patterns');
http://capec.mitre.org/data/definitions/111.html
http://capec.mitre.org/data/definitions/141.html
http://capec.mitre.org/data/definitions/142.html
http://capec.mitre.org/data/definitions/160.html
http://capec.mitre.org/data/definitions/21.html
http://capec.mitre.org/data/definitions/384.html
http://capec.mitre.org/data/definitions/385.html
http://capec.mitre.org/data/definitions/386.html
http://capec.mitre.org/data/definitions/387.html
http://capec.mitre.org/data/definitions/388.html
http://capec.mitre.org/data/definitions/510.html
http://capec.mitre.org/data/definitions/59.html
http://capec.mitre.org/data/definitions/60.html
http://capec.mitre.org/data/definitions/75.html
http://capec.mitre.org/data/definitions/76.html
http://capec.mitre.org/data/definitions/89.html
javascript:toggleblocksOC('346_References');
http://cwe.mitre.org/documents/sources/ATaxonomyofSecurityFaultsintheUNIXOperatingSystem%5BAslam95%5D.pdf
javascript:toggleblocksOC('346_Content_History');
javascript:toggleblocksOC('346_Submissions');
javascript:toggleblocksOC('346_Modifications');

	Vulnerabilities Affecting Dominion Voting Systems ImageCast X _ CISA
	CWE - CWE-347_ Improper Verification of Cryptographic Signature (4.7)
	CWE - CWE-1283_ Mutable Attestation or Measurement Reporting Data (4.7)
	CWE - CWE-912_ Hidden Functionality (4.7)
	CWE - CWE-424_ Improper Protection of Alternate Path (4.7)
	CWE - CWE-24_ Path Traversal_ '.._filedir' (4.7)
	CWE - CWE-250_ Execution with Unnecessary Privileges (4.7)
	CWE - CWE-290_ Authentication Bypass by Spoofing (4.7)
	CWE - CWE-266_ Incorrect Privilege Assignment (4.7)
	CWE - CWE-346_ Origin Validation Error (4.7)

